Table des matières

Les selfies des auteurs .. VII
Se repérer dans le livre ... VIII
Avant-propos ... 1

STRUCTURE ÉLECTRONIQUE MOLÉCULAIRE

1 Nomenclature
1.1 Structure du nom
1.2 Chaîne et substituants carbonés
1.3 Fonctions chimiques

2 Structure des molécules
2.1 Structures de Lewis
2.2 Hybridation du carbone
2.3 Effets électroniques
2.4 Liaisons intermoléculaires (liaisons de faible énergie)

3 Propriétés physico-chimiques des molécules organiques
3.1 Températures de changement d’état
3.2 Solubilité

Ce qu’il faut retenir ... 24
Exercices .. 25

REPRÉSENTATION DES MOLÉCULES ET ISOMÉRIE

1 Différents types de formules pour les molécules organiques
1.1 Représentations bidimensionnelles
1.2 Représentations tridimensionnelles (spatiales)

2 Types d’isomérie
2.1 Isomères de constitution
2.2 Stéréoisomères

Ce qu’il faut retenir ... 48
Exercices .. 49

ALCÈNES – DIÈNES – ALCYNES

1 Les alcènes
1.1 Préparation des alcènes
1.2 Les additions électrophiles sur les alcènes
1.3 Réduction et oxydation des alcènes

2 Les diènes
2.1 Réaction d’addition conjuguée
2.2 Réaction de cycloaddition de Diels-Alder

3 Les alcynes
3.1 La préparation des alcynes
3.2 Réactivité de l’alcyne vrai : acidité
3.3 Réactivité de la liaison π

Ce qu’il faut retenir ... 66
Exercices .. 67
ALDÉHYDES ET CÉTONES

1 Généralités .. 112

2 Préparation .. 115
 2.1 Par oxydation des alcools
 2.2 Par ozonolyse des alcènes
 2.3 Par hydratation des alcynes
 2.4 Par acylation de Friedel-Crafts

3 Addition sur le carbonyle .. 116
 3.1 Formation d’alcools
 3.2 Formation d’hydrates par addition d’eau
 3.3 Formation d’hémiacétals et d’acétals par addition d’alcools
 3.4 Formation d’imines ou d’énamines par addition d’amines
 3.5 Formation de cyanhydrines par addition de cyanures
 3.6 Addition d’ylures de phosphore : réaction de Wittig
 3.7 Réduction de Wolff-Kishner
 3.8 Aldéhydes et cétones α, β-insaturés

4 Réactivité en α des C=O ... 122
 4.1 Énols et énolates
 4.2 Réactivité des énols et des énolates

Ce qu’il faut retenir .. 126
Exercices ... 127

ACIDES ET DÉRIVÉS

1 Généralités .. 128

2 Préparation des acides carboxyliques ... 131
 2.1 Par oxydation d’alcools primaires
 2.2 Par addition d’organométalliques sur le dioxyde de carbone
 2.3 Par hydrolyse de nitriles
 2.4 Par hydrolyse d’esters

3 Réactivité des acides ... 134
 3.1 Formation de chlorures d’acyle
 3.2 Formation d’esters
 3.3 Formation d’amides
 3.4 Formation d’anhydrides d’acide
 3.5 Formation de nitriles
4 Réactivité des dérivés d’acides carboxyliques .. 137
 4.1 Hydrolyse des dérivés d’acides carboxyliques
 4.2 Addition d’alcools sur les dérivés d’acides carboxyliques
 4.3 Réduction des dérivés d’acides carboxyliques
 4.4 Addition d’organométalliques sur les dérivés d’acides carboxyliques

5 Réactivité en α du carbonyle des dérivés d’acides carboxyliques 140
 5.1 Réaction de condensation de Claisen
 5.2 Cyclisation de Dieckmann

6 Dérives dicarboxyles .. 141
 6.1 Alkylation des dérivés dicarboxylés-1,3
 6.2 Décarboxylation des β-cétoacides et des β-diacides
 6.3 Synthèse malonique

Ce qu’il faut retenir .. 144
Exercices ... 145

9 SPECTROSCOPIES ... 146

1 Généralités .. 148

2 La spectroscopie UV-visible .. 149

3 La spectroscopie infrarouge IR ... 151
 3.1 Les vibrations électroniques
 3.2 Les spectres d’absorption

4 La résonance magnétique nucléaire RMN .. 154
 4.1 Principes généraux de la RMN
 4.2 Déplacement chimique
 4.3 Intégration
 4.4 Multiplicité
 4.5 Analyse de spectre

Ce qu’il faut retenir .. 165
Exercices ... 166

Corrigés .. 167
Index .. 179
Crédits iconographiques ... 181
Les selfies des auteurs

Evelyne Chelain

Nadège Lubin-Germain

Je suis professeur de chimie à CY Cergy Paris Université et j’enseigne la chimie organique, la spectroscopie et la chimie bioorganique en Licence, master et cycle ingénieur. Au sein du laboratoire BioCIS, mes activités de recherche concernent la glycochimie, la méthodologie et la synthèse de composés glycomimétiques pour des applications santé, cosmétique et patrimoine.

Jacques Uziel

Je suis maître de conférences, habilité à diriger des recherches, à l’Institut de Sciences et Techniques de CY Cergy Paris Université. J’enseigne la Chimie Organique et la Chimie de Coordination en Licence et en Master, ainsi qu’à la préparation à l’Agrégation interne de Physique-Chimie. J’exerce mes activités de recherche au laboratoire BioCIS dans le domaine de la glycochimie et m’intéresse à la synthèse de nucléosides à activités antivirales et antitumorales.
Se repérer dans le livre

Ouverture de chapitre

- QCM pour se tester sur les prérequis de Terminale.
- Un exemple concret pour introduire le sujet du chapitre.
- Ce que l’on maîtrisera à la fin du chapitre.

Le cours

- Le cours est illustré par des figures et de nombreux exemples.
- Les focus développent un sujet de recherche, une application, un thème d’actualité.
- Des repères historiques.
- Des encadrés « méthode ».
En fin de chapitre

- Un résumé de ce qu’il faut retenir.
- Les QCM et exercices permettent de vérifier ses connaissances et de s’entraîner aux examens.
- Les corrigés sont détaillés à la fin du livre.

En fin d’ouvrage

- Un index pour retrouver rapidement les notions principales.
Avant-propos

Étudier la chimie, c’est analyser la matière et son comportement à l’échelle des atomes et des molécules pour comprendre les phénomènes naturels et maîtriser les nouvelles technologies. C’est pour cela que la chimie est l’une des matières les plus importantes des programmes des filières scientifiques des études supérieures.

La chimie organique concerne la chimie du carbone. Lorsque celui-ci est combiné avec de l’hydrogène, de l’oxygène, de l’azote, du soufre, du phosphore et d’autres éléments, les possibilités structurales des composés carbonés deviennent illimitées et leur nombre dépasse de loin le total de tous les composés non organiques. Une branche importante de la chimie organique concerne les substances naturelles, leur isolement, leur purification, leur étude structurale pour des activités médicales. De plus, la chimie organique moderne s’intéresse à la synthèse de nouvelles molécules en définissant des outils nouveaux permettant d’atteindre des structures complexes. La grande abondance de composés organiques, leur rôle fondamental dans la chimie de la vie et leur diversité structurale ont rendu leur étude particulièrement élaborée et passionnante. La chimie organique est le plus grand domaine de spécialisation parmi les divers domaines de la chimie.

La chimie est accessible à tous, pour autant que l’on construise ses connaissances et sa compréhension sur des bases solides. C’est ce que s’efforce de faire cet ouvrage dans une démarche didactique.

Ce manuel développe d’abord les principes qui régissent la structure des molécules organiques ainsi que les propriétés qui en découlent. Le cœur de l’ouvrage est consacré aux transformations des principales familles de composés organiques (préparation et réactivité). Pour terminer, un chapitre est dédié aux méthodes de caractérisation spectroscopiques couramment utilisées en chimie organique.

Ce livre est conçu de manière à vous guider dans vos apprentissages avec des illustrations en couleur, des définitions, des focus illustrant des exemples concrets, des QCM et des exercices variés avec leurs corrections. Nous souhaitons au travers de cet ouvrage vous transmettre notre passion de la chimie organique.
Pour bien démarrer

1. Combien le carbone^{12}C possède-t-il d'électrons ?
 - a. 6 électrons
 - b. 12 électrons
 - c. 4 électrons

2. Les alcalins présentent :
 - a. 8 électrons sur la couche externe
 - b. 2 électrons sur leur couche externe
 - c. 1 électron sur la couche externe

3. Les gaz rares ont une couche externe :
 - a. à demi-pleine
 - b. pleine
 - c. vide

4. Le tableau périodique a été établi par :
 - a. Kekulé
 - b. Markovnikov
 - c. Mendeleïev

Réponses page 170

Objectifs de ce chapitre

- Comprendre la structure moléculaire (les atomes, leur hybridation, les liaisons interatomiques).
- Connaître les différentes fonctions chimiques.
- Savoir nommer une molécule d’après sa structure (et l’inverse).
- Savoir reconnaître les effets électroniques et leurs rôles sur les propriétés acido-basiques des molécules.
- Être capable d’expliquer les propriétés physico-chimiques au regard des interactions intermoléculaires.
La chimie concerne la transformation de la matière, provoquée par des transferts électroniques, des mises en commun d’électrons entre atomes, des pertes ou des gains d’électrons. Pour comprendre ces transformations, il faut donc avoir une bonne connaissance de l’état électronique de la molécule. Ce chapitre concerne l’hybridation des atomes de carbone constituant l’ossature moléculaire, la polarisation des liaisons due à des différences d’électronégativité et le déplacement d’électrons π. Nous verrons à travers ce chapitre, l’importance de ces effets électroniques sur l’acidité et la basicité des molécules.
Chaque atome (exception faite de l’atome d’hydrogène) peut se lier à plusieurs autres atomes, les possibilités d’agencement pour former des molécules étant exponentielles. On retrouve des associations formant des fonctions chimiques (susceptibles de subir des transformations) et d’autres qui constituent l’ossature de la molécule. Cette complexité nécessite donc d’établir des règles pour classer et nommer les molécules.

1.1 Structure du nom

Le nom d’un composé chimique doit faire apparaître :
- la fonction chimique principale en fin de nom : ceci implique l’établissement d’un ordre de priorité des fonctions chimiques pour les structures polyfonctionnelles ;
- la structure carbonée portant la fonction principale ;
- la présence ou non d’insaturation (alcane, alcène, alcyne) ;
- la présence de fonctions chimiques secondaires et de substituants ;
- des indices de position ;
- au début du nom, les indications stéréochimiques (Chapitre 2).

Voici comment cela se présente sur un exemple :

\[
\text{CH}_2\equiv \text{CH}-\text{CH}-\text{CH}=\text{O} \quad (R \text{ ou } S)-2-[4-(2-\text{méthyléthyl})\text{phényl}]\text{but-3-énal}
\]

La numérotation de la chaîne carbonée la plus longue et portant le plus grand nombre d’insaturations, se fait de sorte que la fonction chimique principale porte le plus petit indice. Dans le cas de fonctions carbonées terminales (aldéhydes, acides, esters, amides, chlorures d’acyle), le carbone de la fonction prend l’indice. La numérotation permettra d’indiquer la position des insaturations, des éléments de stéréochimie, des substituants et des fonctions chimiques secondaires. Par ailleurs, une numérotation secondaire se met en place pour les substituants carbonés. Dans ce cas, le plus petit indice est donné au carbone lié à la chaîne carbonée principale.

Exemple d’application - numérotation

\[
\text{Figure 1.1} \quad \text{Structure générale du nom d’une molécule organique}
\]

9782100815449_CH01.indd 4
7/12/21 6:38 PM
L'acide carboxylique est la fonction prioritaire et porte le premier indice. Puis la numérotation se fait sur la chaîne carbonée la plus longue. Enfin, une numérotation secondaire est mise en place à partir du carbone lié à la structure carbonée principale.

D'où le nom de la molécule : acide 5-propylnon-2-énoïque.

1.2 Chaîne et substituants carbonés

Définition

On appelle chaîne carbonée principale, la chaîne possédant par ordre de priorité, la fonction chimique prioritaire, le nombre maximum de liaisons multiples, le nombre maximum de substituants et le plus grand nombre d’atomes de carbone.

Le nombre d’atomes de carbone portant la fonction chimique principale donne la racine du nom, à laquelle est ajoutée une terminaison -ane, -ène, -yne pour mentionner la présence ou non d’insaturation.

Lorsque les structures carbonées sont cycliques, un préfixe cyclo est ajouté juste avant la racine du nom (exemple : cyclohexane)

Les substituants liés par un carbone portent un suffixe -yl et les substituants liés par un oxygène portent un suffixe -oxy.

Tableau 1.1 Racine et terminaison des hydrocarbures

<table>
<thead>
<tr>
<th>Nombre de carbones</th>
<th>Racine</th>
<th>Substituant</th>
<th>Alcane</th>
<th>Alcène</th>
<th>Alcyne</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Méth</td>
<td>Méthyl</td>
<td>Méthane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Éth</td>
<td>Éthyl</td>
<td>Éthane</td>
<td>Éthène</td>
<td>Éthyne</td>
</tr>
<tr>
<td>3</td>
<td>Prop</td>
<td>Propyl</td>
<td>Propane</td>
<td>Propène</td>
<td>Propyne</td>
</tr>
<tr>
<td>4</td>
<td>But</td>
<td>Butyl</td>
<td>Butane</td>
<td>Butène</td>
<td>Butyne</td>
</tr>
<tr>
<td>5</td>
<td>Pent</td>
<td>Pentyl</td>
<td>Pentane</td>
<td>Pentène</td>
<td>Pentyne</td>
</tr>
<tr>
<td>6</td>
<td>Hex</td>
<td>Hexyl</td>
<td>Hexane</td>
<td>Hexène</td>
<td>Hexyne</td>
</tr>
<tr>
<td>7</td>
<td>Hept</td>
<td>Heptyl</td>
<td>Heptane</td>
<td>Heptène</td>
<td>Heptyne</td>
</tr>
<tr>
<td>8</td>
<td>Oct</td>
<td>Octyl</td>
<td>Octane</td>
<td>Octène</td>
<td>Octyne</td>
</tr>
<tr>
<td>9</td>
<td>Non</td>
<td>Nonyl</td>
<td>Nonane</td>
<td>Nonène</td>
<td>Nonyne</td>
</tr>
<tr>
<td>10</td>
<td>Déc</td>
<td>Décyl</td>
<td>Décane</td>
<td>Décène</td>
<td>Décyne</td>
</tr>
<tr>
<td>11</td>
<td>Undéc</td>
<td>Undéyl</td>
<td>Undécane</td>
<td>Undécène</td>
<td>Undécyne</td>
</tr>
<tr>
<td>12</td>
<td>Dodéc</td>
<td>Dodécyl</td>
<td>Dodécane</td>
<td>Dodécène</td>
<td>Dodécyne</td>
</tr>
<tr>
<td>15</td>
<td>Pentadéc</td>
<td>Pentadécyl</td>
<td>Pentadécane</td>
<td>Pentadécène</td>
<td>Pentadécyne</td>
</tr>
<tr>
<td>20</td>
<td>Eicos</td>
<td>Eicosyl</td>
<td>Eicosane</td>
<td>Eicosène</td>
<td>Eicosyne</td>
</tr>
</tbody>
</table>
chapitre 1
Structure électronique moléculaire

Figure 1.2
Noms de certains substituants particuliers

1.3 Fonctions chimiques
Les fonctions chimiques sont les fonctions réactives des composés chimiques. Elles sont classées par ordre de priorité selon leur degré d’oxydation, les plus oxydées étant prioritaires. Leur nom sera indiqué par un suffixe à la fin du nom du composé ou en préfixe avec les substituants avant la racine du nombre de carbones. Dans ce dernier cas, une numérotation permet de localiser cette fonction chimique secondaire sur la chaîne carbonée principale.

Définitions
1- La fonction chimique principale est la fonction la plus oxydée et sera indiquée par un suffixe à la fin du nom.
2- Les fonctions secondaires seront indiquées par un préfixe.

Tableau 1.2 Préfixes et suffixes des fonctions chimiques

<table>
<thead>
<tr>
<th>Priorité</th>
<th>Fonction chimique</th>
<th>Préfixe</th>
<th>Suffixe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nom Formule chimique</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Acide carboxylique -COOH</td>
<td>carboxy</td>
<td>acide ... oïque</td>
</tr>
<tr>
<td>2</td>
<td>Ester -COOR</td>
<td>oxycarbonyl</td>
<td>... oate de yle</td>
</tr>
<tr>
<td>3</td>
<td>Halogénéur d’acyle -COX</td>
<td>halogénoformyl</td>
<td>halogénure de ...oyle</td>
</tr>
<tr>
<td>4</td>
<td>Amide -CONH₂</td>
<td>carbamoyl</td>
<td>amide</td>
</tr>
<tr>
<td>5</td>
<td>Nitrile -CN</td>
<td>cyano</td>
<td>nitrile</td>
</tr>
<tr>
<td>6</td>
<td>Aldéhyde -CHO</td>
<td>formyl</td>
<td>al</td>
</tr>
<tr>
<td>7</td>
<td>Cétone -CO-</td>
<td>oxo</td>
<td>one</td>
</tr>
<tr>
<td>8</td>
<td>Alcool -OH</td>
<td>hydroxy</td>
<td>ol</td>
</tr>
</tbody>
</table>