CONCOURS ECRICOME TREMPLIN 2 ET PASSERELLE 2
CONCOURS
ÉCRICOME TREMPLIN 2
ET PASSERELLE 2
Tout-en-un

3e édition
Conception de la couverture : Caroline Joubert

Le pictogramme qui figure ci-contre mérite une explication. Son objet est d’alerter le lecteur sur la menace que représente pour l’avenir de l’écrit, particulièrement dans le domaine de l’édition technique et universitaire, le développement massif du photocopillage.

Le Code de la propriété intellectuelle du 1er juillet 1992 interdit en effet expressément la photocopie à usage collectif sans autorisation des ayants droit. Or, cette pratique s’est généralisée dans les établissements d’enseignement supérieur, provoquant une baisse brutale des achats de livres et de revues, au point que la possibilité même pour les auteurs de créer des œuvres nouvelles et de les faire éditer correctement est aujourd’hui menacée.

Nous rappelons donc que toute reproduction, partielle ou totale, de la présente publication est interdite sans autorisation de l’auteur, de son éditeur ou du Centre français d’exploitation du droit de copie (CFC, 20, rue des Grands-Augustins, 75006 Paris).

© Dunod, 2017
11 rue Paul Bert, 92240 Malakoff
www.dunod.com
ISBN 978-2-10-075965-1

Le Code de la propriété intellectuelle n’autorisant, aux termes de l’article L. 122-5, 2° et 3° a), d’une part, que les « copies ou reproductions strictement réservées à l’usage privé du copiste et non destinées à une utilisation collective » et, d’autre part, que les analyses et les courtes citations dans un but d’exemple et d’illustration, « toute représentation ou reproduction intégrale ou partielle faite sans le consentement de l’auteur ou de ses ayants droit ou ayants cause est illicite » (art. L. 122-4).

Cette représentation ou reproduction, par quelque procédé que ce soit, constituerait donc une contrefaçon sanctionnée par les articles L. 335-2 et suivants du Code de la propriété intellectuelle.
Table des matières

Introduction .. 1

Partie 1 Mathématiques et logique

Sous-partie 1.1 Mathématiques... 8

1. Calcul mental ... 9
2. Critères de divisibilité ... 12
3. Outils calculatoires .. 15
4. Le point sur les pourcentages ... 24
5. Les équations ... 28
6. Les inéquations ... 32
7. Les systèmes .. 40
8. Les polynômes de degrés deux ... 44
9. Théorèmes et propriétés célèbres en géométrie..................................... 49
10. Résultats importants en géométrie ... 53
11. Périmètres, surfaces et volumes ... 60
12. Conversions .. 65
13. Calculs de probabilités ... 74
14. Notions de statistiques descriptives ... 79
15. Récapitulatif sur les cas discret et continu ... 86
16. Le point sur la loi de Bernoulli et la loi Binomiale 88
17. Dénombrement ... 93

Sous-partie 1.2 Logique ... 98

18. Les séries de lettres ... 99
19. Les séries de chiffres et de nombres ... 105
20. Logique spatiale : séries de symboles ... 112

Sous-partie 1.3 Compréhension de texte... 116

21. Méthode de compréhension d’un texte ... 117
22. Un exemple : comme aux tests d’aptitude des concours Tremplin 2 ou Passerelle 2 ! .. 119
<table>
<thead>
<tr>
<th>Sous-partie 1.4 Tests blancs</th>
<th>123</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test blanc n° 1</td>
<td>124</td>
</tr>
<tr>
<td>Test blanc n° 2</td>
<td>159</td>
</tr>
<tr>
<td>Test blanc n° 3</td>
<td>194</td>
</tr>
</tbody>
</table>

Partie 2 Note de synthèse et analyse de textes comparés

Introduction ... 234

Sous-partie 2.1 Expression écrite et orthographe 236
1. Améliorer son expression écrite .. 237
2. Éviter les fautes d’orthographe .. 245

Sous-partie 2.2 La méthode ... 253
3. La première lecture .. 255
4. La seconde lecture .. 262
5. Le plan ... 266
6. La rédaction ... 269
7. Dossier de textes : Tremplin .. 275
8. Dossier de textes : Passerelle .. 291

Sous-partie 2.3 Tests blancs ... 310
1. Tremplin : Test blanc d’analyse de textes comparés 311
2. Passerelle : Test blanc de note de synthèse 337

Partie 3 Anglais

Sous-partie 3.1 Grammaire ... 364
1. La phrase .. 365
2. Les propositions : relatives et conjonctives 367
3. Les propositions : To et –ing 369
4. Les propositions : les causatives 370
5. Le groupe nominal : nom et déterminant 371
6. Le groupe nominal : démonstratifs et possession 374
7. Le groupe nominal : adjectifs et promoms 376
8. Le groupe verbal : temps ... 379
9. Le groupe verbal : modaux et utilisations .. 382
10. Le groupe verbal : structures idiomatiques 385

Sous-partie 3.2 Vocabulaire ... 387
11. Phrasal verbs et verbes prépositionnels : quelques verbes difficiles ... 388
12. Vocabulaire utile de l’entreprise pour les écrits et les oraux 390

Sous-partie 3.3 Tests blancs ... 394
1. Tremplin : Test d’anglais blanc ... 395
2. Passerelle : test d’anglais blanc ... 420

Partie 4 L’oral

1. Les dix conseils pour réussir votre entretien ! 440
2. Conseils pour l’oral d’anglais ... 447
3. Gérer le stress à l’oral ! ... 449
1. Le concours Ecricome Tremplin 2

Le concours Tremplin 2 s’adresse aux étudiants ayant au minimum un bac + 3 qui souhaitent intégrer une école de commerce. Il est composé de plusieurs épreuves :

- Le Tage Mage®: test d’aptitude aux études de gestion niveau bac + 3 regroupant des épreuves de français (aptitudes verbales), des épreuves de calcul et problèmes algébriques ainsi que des épreuves de logique.
- L’épreuve de synthèse
- L’épreuve d’anglais

a. Le Tage Mage® (2 heures)

Le Tage Mage® vise à évaluer les capacités du candidat à intégrer des filières économiques à dominante gestion et commerciale. Ce test regroupe différentes épreuves : deux épreuves d’aptitudes verbales : la compréhension de texte et expression, deux épreuves de calcul, une épreuve de logique verbale et chiffrée et une épreuve de logique spatiale. Ce test est requis par certaines écoles de commerce ou universités spécialisées en économie ou en gestion.

Il s’adresse aux étudiants de niveau bac à bac + 3 ou 4. En fonction du cas de figure dans lequel vous vous situez, il vous est exigé un score minimum au Tage Mage®.

ATTENTION

Vous ne pouvez passer ce test qu’une seule fois par an !

Comment l’épreuve du Tage Mage® se déroule-t-elle ?

Le Tage Mage® se compose de 90 questions réparties en six sous-tests :

- Compréhension de textes (20 minutes pour lire 3 textes et répondre à 15 questions en présence des textes),
- Calcul (20 minutes pour répondre à 15 questions),
- Raisonnement/argumentation (20 minutes pour répondre à 15 questions),
- Conditions minimales (20 minutes pour répondre à 15 questions),
- Expression : synonymie, correction d’expressions incorrectes et phrases ou paragraphes à compléter (20 minutes pour répondre à 15 questions),
- Logique : données lettrées, données chiffrées et données spatiales (20 minutes pour répondre à 15 questions).

Ces différents sous-tests comportent des questions à 5 choix possibles dont un seul est correct et les épreuves durent en tout 120 minutes soit deux heures pour l’ensemble de ces six épreuves.
Les épreuves de compréhension de texte et expression mesurent vos aptitudes verbales en français (vocabulaire, grammaire, syntaxe et orthographe) et votre capacité à comprendre l’idée générale d’un paragraphe et d’un texte. Les épreuves de calcul et de conditions minimales évaluent vos compétences pour résoudre des problèmes mathématiques rapidement. Et enfin les épreuves de raisonnement/argumentation de logique apprécient vos capacités de raisonnement logique.

Le test est noté sur 360 points. Votre note est calculée de la manière suivante :

<table>
<thead>
<tr>
<th>Domaines</th>
<th>Épreuves</th>
<th>Questions</th>
<th>Durée</th>
<th>Nombre de points</th>
<th>Note finale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Compréhension de textes (sous-test 1)</td>
<td>15 questions à 5 choix possibles dont un seul est correct</td>
<td>20 min</td>
<td>$15 \times 4 = 60$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expression (sous-test 5)</td>
<td>15 questions à 5 choix possibles dont un seul est correct</td>
<td>20 min</td>
<td>$15 \times 4 = 60$</td>
<td></td>
</tr>
<tr>
<td>Résolution de problèmes</td>
<td>Calcul (sous-test 2)</td>
<td>15 questions à 5 choix possibles dont un seul est correct</td>
<td>20 min</td>
<td>$15 \times 4 = 60$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conditions minimales (sous-test 4)</td>
<td>15 questions à 5 choix possibles dont un seul est correct</td>
<td>20 min</td>
<td>$15 \times 4 = 60$</td>
<td></td>
</tr>
<tr>
<td>Raisonnement logique</td>
<td>Raisonnement/argumentation (sous-test 3)</td>
<td>15 questions à 5 choix possibles dont un seul est correct</td>
<td>20 min</td>
<td>$15 \times 4 = 60$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Logique : données lettrées, chiffrées et spatiales (sous-test 6)</td>
<td>15 questions à 5 choix possibles dont un seul est correct</td>
<td>20 min</td>
<td>$15 \times 4 = 60$</td>
<td></td>
</tr>
</tbody>
</table>

Somme des scores obtenus aux 6 sous-tests $= \ldots/360$

ATTENTION

Vous êtes pénalisé(e) si vous ne répondez pas correctement à une question ! Vous perdez des points. Si vous hésitez sur un énoncé, passez au suivant car l’absence de réponse ne vous enlève pas de point. Ne faites pas confiance au hasard, c’est trop risqué !

b. L’épreuve de synthèse de dossier (3 h)

L’épreuve d’analyse de textes comparés est relativement difficile et nécessite de l’entraînement ainsi qu’une bonne concentration. Il s’agit de déterminer la problématique commune à plusieurs textes et de rédiger une composition. Ce développement doit tenir compte des arguments de tous les textes et souligner les liens qu’ils ont.
c. L’épreuve d’anglais (1 h 40)

Il s’agit d’un test comprenant quatre parties chacune composées de 30 questions à quatre choix possibles dont un seul est correct. Les thèmes sur lesquels vous serez interrogé(e) sont les suivants :
• Structure (30 questions en 25 minutes)
• Grammaire (30 questions en 25 minutes)
• Compréhension de textes (30 questions en 25 minutes)
• Vocabulaire (30 questions en 25 minutes)

ATTENTION

Vous êtes pénalisé si vous ne répondez pas correctement à une question ! Ne perdez des points inutilement : si vous hésitez sur un énoncé, passez au suivant car l’absence de réponse ne vous enlève pas de point. Ne faites pas confiance au hasard, c’est trop risqué !

2. Le concours Passerelle 2

Le concours Passerelle 2 s’adresse aux étudiants ayant au minimum un bac + 2 qui souhaitent intégrer une école de commerce. Il est composé de plusieurs épreuves :
• Le Tage Mage®
• L’épreuve de synthèse
c. L’épreuve d’anglais (1 h 30)

Il s’agit d’une série de questions à choix multiples dont un seul est correct. Ces questions portent sur la grammaire, la structure des phrases, l’usage et la compréhension d’un texte...
écrit en anglais. Cette épreuve qui comprend en tout 80 questions est découpée en quatre sections :
- Grammar exercises (20 questions en 15 minutes)
- Find the error (15 questions en 20 minutes)
- Vocabulary exercises (25 questions en 15 minutes)
- Reading comprehension (20 questions en 40 minutes)

ATTENTION

Vous êtes pénalisé si vous ne répondez pas correctement à une question ! Ne perdez des points inutilement : si vous hésitez sur un énoncé, passez au suivant car l’absence de réponse ne vous enlève pas de point. Ne faites pas confiance au hasard, c’est trop risqué !

d. L’épreuve au choix (2 heures)

Vous avez le choix parmi 17 disciplines : allemand, espagnol, italien, biologie, mathématiques, informatique, technologie, philosophie, lettres et sciences humaines, droit, économie, gestion, gestion et négociation commerciale, management d’une entreprise d’hôtellerie-restauration, créativité et gestion de projet, marketing, éducation artistique, STAPS. **Cette épreuve n’est pas traitée dans cet ouvrage.**

3. Comment préparer les concours Ecricome Tremplin 2 ou Passerelle 2 ?

Le Tage Mage® du concours Tremplin 2 et du concours Passerelle 2 sont des examens qui nécessitent une préparation soutenue. Ce sont des épreuves difficiles dans la mesure où il faut être très rapide. Les sous-tests « calcul » et « conditions minimales » nécessitent une parfaite maîtrise du programme de mathématiques du collège et plus précisément des classes de 4e et 3e. Vous allez donc devoir vous repencher sur les théorèmes de Pythagore ou de Thalès, résoudre à nouveau des équations, des problèmes, etc. Que de bons (ou mauvais) souvenirs ! Pas d’inquiétude : il s’agit d’un QCM, donc on ne vous demande pas de démontrer vos résultats !

Les autres parties des tests d’aptitudes font appel au « bon sens ». Elles n’exigent pas de notions particulières mais demandent tout de même une préparation assez intensive. Vous devez avoir traité plusieurs QCM du même type afin d’être capable de réussir Les tests. Si vous n’avez jamais fait de test de logique par exemple, il est très difficile d’en comprendre le fonctionnement du premier coup et surtout en temps limité.

En ce qui concerne la synthèse en français, vous devez vous entraîner et lire de manière régulière les journaux d’actualité économique ainsi que des revues de sciences humaines et sociales.

Enfin pour l’épreuve d’anglais, revoyez de manière très assidue vos règles de grammaire, orthographe, vocabulaire, conjugaison, structure de phrases, etc. Lisez également la presse en anglais afin de vous familiariser avec un plus large vocabulaire, notamment journalistique et économique.
Attitude à adopter avant et après les concours

La veille
• Repérer le lieu exact de l’examen (station de métro, numéro de salle, étage, etc.)
• Préparer votre convocation, pièce d’identité et autres papiers que l’on peut vous demander, etc.
• N’oubliez pas de régler votre réveil ! Ne pas se réveiller le jour J serait plus que rageant !
• Couchez-vous tôt ! Cette épreuve demande une grande concentration. En étant fatigué(e), vous allez perdre vos moyens et faire des erreurs d’inattention !

Le jour J
• Habillez-vous de manière sobre et correcte. Mais surtout choisissez des vêtements dans lesquels vous vous sentez bien !
• Mangez bien au petit-déjeuner ! Ne partez pas le ventre vide !
• Prévoyez d’arriver en avance afin d’éviter tout stress en cas de problème (embouteillages, retard dans les transports en commun, etc.).
• Une fois devant votre copie faites du mieux que vous pouvez. Et surtout si vous ne savez pas répondre à une question passez à la suivante !

Les résultats
• Vous avez réussi : BRAVO !
• Vous avez échoué : ce n’est pas grave, vous pouvez repasser le concours l’année suivante. Et vous serez d’autant mieux préparé(e) car vous saurez à quoi vous attendre. Tentez de repérer les points qui vous ont posé des problèmes et accentuez vos prochaines révisions sur ces différents thèmes. Bon courage !

4. Présentation de l’ouvrage

Cet ouvrage est construit en trois grandes parties :

Première partie : Le Tage Mage® du concours Tremplin 2 et du concours Passerelle 2

Les différents rappels de cours sont tournés principalement sur les points de mathématiques traités au collège, notions essentielles à la réussite des épreuves de calcul. Par exemple le théorème de Pythagore, le théorème de Thalès vous rappellent-ils des souvenirs ? Ou vous sont-ils parfaitement inconnus ?

Certains concepts de probabilités traités également dans cette partie peuvent aussi vous être utiles pour ces épreuves de calcul.

La logique également traitée dans ce deuxième chapitre a elle aussi son importance. Vous n’avez que très rarement (voire pas du tout) eu l’occasion de rencontrer des exercices de logique au cours de votre scolarité. Les nombreux exemples et applications vous permettront de comprendre leur fonctionnement.

À la fin de la partie, 3 tests blancs vous permettent de vous entraîner dans les conditions du concours.
Deuxième partie : L'épreuve de synthèse et d'analyse de textes comparés

Vous trouverez dans une première partie des rappels de français et des exercices pour vous évaluer. Nous vous proposons ensuite une méthodologie complète, détaillée et adaptée à chacun des concours.
À la fin de la partie, 2 épreuves de note de synthèse inédites vous permettent de vous entraîner dans les conditions du concours.

Troisième partie : L'épreuve d’anglais

L'épreuve d’anglais est traitée dans cette troisième qui vous propose un rappel des règles de grammaire indispensables pour réussir les QCM, ainsi qu’une liste du vocabulaire incontournable à connaître. Cette épreuve nécessite également un travail régulier de pratique de la langue anglaise (grammaire, structure des phrases, orthographe) ainsi qu’une lecture assidue des journaux anglo-saxons pour la partie compréhension de texte.

Un dernier mot avant de consulter cet ouvrage : **BONNE CHANCE** !

Remerciements

Je tiens à remercier l’équipe d’édition pour son soutien, sa disponibilité et sa confiance.

Je remercie également tous les élèves que j’ai encadrés et accompagnés au cours de stages de préparation à différents examens et notamment aux concours Tremplin et Passerelle. Ils m’ont exposé leurs difficultés et leurs interrogations. Cela m’a permis de mieux cibler les différents thèmes qu’ils ne comprenaient pas et d’insister sur les points délicats.

J’espère que cet ouvrage répondra aux attentes des candidats aux concours Tremplin 2 et Passerelle 2.

Bonne chance et bon travail à tous !

Marie-Virginie Speller

« Toutes les grandeurs de ce monde ne valent pas un bon ami. » Voltaire

À ma chère amie.
Partie 1
Mathématiques et logique
1.1 Mathématiques

1. Calcul mental ... 9
2. Critères de divisibilité ... 12
3. Outils calculatoires .. 15
4. Le point sur les pourcentages ... 24
5. Les équations ... 28
6. Les inéquations .. 32
7. Les systèmes .. 40
8. Les polynômes de degrés deux ... 44
9. Théorèmes et propriétés célèbres en géométrie 49
10. Résultats importants en géométrie 53
11. Périmètres, surfaces et volumes 60
12. Conversions .. 65
13. Calculs de probabilités .. 74
14. Notions de statistiques descriptives 79
15. Récapitulatif sur les cas discret et continu 86
16. Le point sur la loi de Bernoulli et la loi Binomiale 88
17. Dénombrement .. 93

La partie « calcul » du test porte sur les programmes de collège et lycée en mathématiques. Les questions regroupent les chapitres portant sur les équations, les systèmes, la géométrie, le calcul algébrique, etc.
Le calcul mental peut s’avérer très utile dans les épreuves de rapidité, notamment dans les exercices des sous-tests « calcul » et « logique » du test. Il est également indispensable de connaître ses carrés et cubes ainsi que certaines tables de multiplication par cœur !

1. Les 20 premiers carrés

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>25</td>
<td>36</td>
<td>49</td>
<td>64</td>
<td>81</td>
<td>100</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>144</td>
<td>169</td>
<td>196</td>
<td>225</td>
<td>256</td>
<td>289</td>
<td>324</td>
<td>361</td>
<td>400</td>
<td></td>
</tr>
</tbody>
</table>

2. Les 12 premiers cubes

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>8</td>
<td>27</td>
<td>64</td>
<td>125</td>
<td>216</td>
<td>343</td>
<td>512</td>
<td>729</td>
<td>1000</td>
<td>1331</td>
<td>1728</td>
</tr>
</tbody>
</table>

REMARQUE

64 est à la fois un carré et un cube ! Il en est de même pour 0 et 1 qui, élevés respectivement à n’importe quelle puissance, reste toujours égaux respectivement à eux-mêmes :

\[0^2 = 0^3 = 0 \text{ et } 1^2 = 1^3 = 1\]

3. Tables de 11 et 12

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>11</td>
<td>22</td>
<td>33</td>
<td>44</td>
<td>55</td>
<td>66</td>
<td>77</td>
<td>88</td>
<td>99</td>
<td>110</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>132</td>
<td>143</td>
<td>154</td>
<td>165</td>
<td>176</td>
<td>187</td>
<td>198</td>
<td>209</td>
<td>220</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>12</td>
<td>24</td>
<td>36</td>
<td>48</td>
<td>60</td>
<td>72</td>
<td>84</td>
<td>96</td>
<td>108</td>
<td>120</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>144</td>
<td>156</td>
<td>168</td>
<td>180</td>
<td>192</td>
<td>204</td>
<td>216</td>
<td>228</td>
<td>240</td>
<td></td>
</tr>
</tbody>
</table>
4. Puissances de 2 et de 3

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^n</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td>256</td>
<td>512</td>
<td>1 024</td>
</tr>
<tr>
<td>3^n</td>
<td>1</td>
<td>3</td>
<td>9</td>
<td>27</td>
<td>81</td>
<td>243</td>
<td>729</td>
<td>2 187</td>
<td>6 561</td>
<td>19 683</td>
<td>59 049</td>
</tr>
</tbody>
</table>

5. Factorielles

La factorielle d’un nombre n est le produit des nombres entiers compris entre 1 et n. Par exemple $2! = 2 \times 1 = 2$ ou $5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$.

Voici les 11 premières factorielles :

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n!$</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>24</td>
<td>120</td>
<td>720</td>
<td>5 040</td>
<td>36 280</td>
<td>3 628 800</td>
<td></td>
</tr>
</tbody>
</table>

6. Sommes

<table>
<thead>
<tr>
<th>Type de somme</th>
<th>Exemple</th>
</tr>
</thead>
<tbody>
<tr>
<td>Somme des n 1ers entiers</td>
<td>$\sum_{k=0}^{n} k = \frac{n(n+1)}{2}$</td>
</tr>
<tr>
<td>1 + 2 + 3 + … + 100 = $\frac{100 \times 101}{2}$</td>
<td></td>
</tr>
<tr>
<td>= 50 \times 101 = 5 050</td>
<td></td>
</tr>
<tr>
<td>Somme des n 1ers entiers élevés au carré</td>
<td>$\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$</td>
</tr>
<tr>
<td>1 + 4 + 9 + 16 + 25 = $\frac{5 \times (5 + 1) \times (2 \times 5 + 1)}{6}$</td>
<td></td>
</tr>
<tr>
<td>= $\frac{5 \times 6 \times 11}{6}$ = 55</td>
<td></td>
</tr>
<tr>
<td>Somme des n 1ers entiers élevés au cube</td>
<td>$\sum_{k=0}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2$</td>
</tr>
<tr>
<td>1 + 8 + 27 + 64 = $\frac{4 \times (4 + 1)^3}{2}$</td>
<td></td>
</tr>
<tr>
<td>= 10^2 = 100</td>
<td></td>
</tr>
</tbody>
</table>
7. Suites

<table>
<thead>
<tr>
<th>Type de suite</th>
<th>Terme</th>
<th>Somme</th>
<th>Exemples</th>
</tr>
</thead>
</table>
| Arithmétique de raison \(r \) et de 1\(^{er} \) terme \(U_0 \) | \(U_n = U_0 + nr \) Chaque terme est augmenté de la raison \(r \) (qui est un réel) par rapport au précédent | \(S_n = \frac{1^{er} \text{terme} + \text{dernier terme}}{2} \times \text{nombre de termes} \)
\(S_n = \frac{U_0 + U_n}{2} \times (n+1) \) | Somme des quatre premiers termes de la suite arithmétique de raison 3 et de premier terme 5 :
\(5 + 8 + 11 + 14 = \frac{5 + 14}{2} \times 4 = 9.5 \times 4 = 38 \) |
| Géométrique de raison \(q \) et de 1\(^{er} \) terme \(V_0 \) | \(V_n = V_0 \times q^n \) Chaque terme est multiplié par la raison \(q \) (qui est un réel) par rapport au précédent | \(S_n = \frac{1^{er} \text{terme}}{1 - \text{raison}} \times \frac{1 - q^{n+1}}{1 - q} \)
\(S_n = V_0 \times \frac{1 - q^{n+1}}{1 - q} \) | Somme des 4 premiers termes de la suite géométrique de raison 2 et de premier terme 4 :
\(4 + 8 + 16 + 32 = 4 \times \frac{1 - 2^4}{1 - 2} = 4 \times (2^4 - 1) = 4 \times 15 = 60 \) |
Les critères de divisibilité vous seront très utiles dans les énigmes de logique faisant intervenir des séries doubles chiffrées.

<table>
<thead>
<tr>
<th>Critères de Divisibilité</th>
<th>Exemples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Par 2</td>
<td>Un nombre est divisible par 2 si et seulement s’il est pair. C’est-à-dire si et seulement s’il se termine par 0, 2, 4, 6 ou 8.</td>
</tr>
<tr>
<td>Par 3</td>
<td>Un nombre est divisible par 3 si et seulement si la somme de ses chiffres est égale à un nombre divisible par 3 (3, 6 ou 9).</td>
</tr>
<tr>
<td>Par 4</td>
<td>Un nombre comportant au moins 2 chiffres est divisible par 4 si et seulement si ses deux derniers chiffres forment un nombre divisible par 4.</td>
</tr>
<tr>
<td>Par 5</td>
<td>Un nombre est divisible par 5 si et seulement s’il se termine par 0 ou 5.</td>
</tr>
<tr>
<td>Par 6</td>
<td>Un nombre est divisible par 6 si et seulement s’il est à la fois divisible par 2 et 3.</td>
</tr>
<tr>
<td>Par 7</td>
<td>Il n’y a pas réellement de méthode pour déterminer si un nombre est divisible par 7. En revanche vous pouvez repérer les nombres divisibles par 7 lorsque leur expression est simple.</td>
</tr>
<tr>
<td>Par 8</td>
<td>Il n’y a pas réellement de méthode pour déterminer si un nombre est divisible par 8. En revanche comme pour le chiffre 7 vous pouvez repérer les nombres divisibles par 8 lorsque leur expression est simple.</td>
</tr>
<tr>
<td>Par 9</td>
<td>Un nombre est divisible par 9 si et seulement si la somme de ses chiffres est égale à un nombre divisible par 9 (9, 18, 27, etc.).</td>
</tr>
<tr>
<td>Par 10</td>
<td>Un nombre est divisible par 10 si et seulement s’il se termine par 0.</td>
</tr>
<tr>
<td>Par 11</td>
<td>Un nombre à au moins deux chiffres est divisible par 11 si et seulement si la somme de ses chiffres de rang impair est égale à celle de ses chiffres de rang pair.</td>
</tr>
</tbody>
</table>
DÉFINITION

Les nombres premiers sont des nombres uniquement divisibles par 1 et eux-mêmes.

À RETENIR

Voici les 25 nombres premiers compris entre 1 et 100 : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97

Comme aux concours : à vous de jouer !

Question 1 : Quel est l'intrus parmi : 121 – 156 – 165 – 231 ?

- **A.** 121
- **B.** 156
- **C.** 165
- **D.** 231
- **E.** 451

- **A.** 343
- **B.** 243
- **C.** 144
- **D.** 225
- **E.** 729

Question 3 : Que vaut : 1 + 2 + 3 + 4 + 5 + ... + 2 012 = ?

- **A.** 2 012
- **B.** 2 025 080
- **C.** 4 050 156
- **D.** 2 025 077
- **E.** 2 025 078

Question 4 : Quel nombre complète la série : 8 – 16 – ? – 64 – 128 ?

- **A.** 18
- **B.** 24
- **C.** 32
- **D.** 48
- **E.** 95

Question 5 : Quel est l'intrus parmi : 324 – 150 – 356 – 400 – 808 ?

- **A.** 150
- **B.** 324
- **C.** 400
- **D.** 356
- **E.** 808

Question 6 : Que vaut : 1 + 6 + 11 + ... + 46 + 51 + 56 = ?

- **A.** 344
- **B.** 342
- **C.** 684
- **D.** 688
- **E.** 874

Question 7 : Que vaut : 1 + 4 + 16 + 64 + 256 + 1 024 + 4 096 + 16 384 + 65 536 + 262 144 = ?

- **A.** 347 525
- **B.** 1 048 576
- **C.** 348 525
- **D.** 349 525
- **E.** 350 000

Question 8 : Quel est l'intrus parmi : 8 – 27 – 512 – 729 – 4 ?

- **A.** 27
- **B.** 512
- **C.** 4
- **D.** 729
- **E.** 1 000

Question 9 : Quel est l'intrus parmi : 125 – 6 – 24 – 120 – 720 – 5 040 ?

- **A.** 125
- **B.** 6
- **C.** 24
- **D.** 120
- **E.** 720

Question 10 : Quel est l'intrus parmi : 3 – 16 – 97 – 37 ?

- **A.** 3
- **B.** 16
- **C.** 37
- **D.** 97
- **E.** 23

Corrigés

1. L'intrus est 156 car c'est le seul nombre qui ne soit pas un multiple de 11. La bonne réponse est **B**.

2. Seul 343 convient car il s'agit d'un cube : 343 = 73. La bonne réponse est **A**.

3. Il s'agit de la somme des 2 012 premiers entiers. 1 + ... + 2 012 = \(\frac{2 012 \times 2 013}{2}\) = 2 025 078. La bonne réponse est **E**.

4. Il s'agit d'une suite de puissances de 2. Chaque terme est multiplié par 2 à chaque étape. Le terme cherché est donc 16 \(\times\) 2 = 32. La bonne réponse est **C**.
REMARQUE
Il s’agit d’une suite géométrique de raison 2 et de premier terme 8.

5. Seul 150 n’est pas divisible par 4. En effet ces deux derniers chiffres forment 50 qui n’est pas un nombre divisible par 4. La bonne réponse est A.

6. Il s’agit des douze premiers termes de la suite arithmétique de raison 5 et de premier terme 1.

Ainsi \(1 + \cdots + 56 = \frac{1 + 56}{2} \times 12 = 57 \times 6 = 342\). La bonne réponse est B.

ASTUCE
Pour connaître le nombre de termes dans la somme, vous devez déterminer le rang de son dernier terme. Vous utilisez, pour cela, la formule donnant le terme \(U_n\) d’une suite arithmétique.

\[U_n = U_0 + nr \text{ où } U_n = 56, \ U_0 = 1 \text{ et } r = 5.\]

Cela équivaut donc à 56 = 1 + 5n, soit à 5n = 55 et finalement à \(n = \frac{55}{5} = 11\)

Ainsi le dernier terme de la somme est \(U_{11}\) et elle est donc composée de 11 + 1 = 12 termes.

7. Il s’agit de la somme des 10 premiers termes de la suite géométrique de raison 4 et de premier terme 1. Ainsi \(1 + \cdots + 262 144 = 1 \times \frac{1 - 4^{10}}{1 - 4} = \frac{1 \ 048 \ 575}{3} = 349 \ 525\). La bonne réponse est D.

8. Il s’agit d’une série de cubes parfaits sauf 4. 4 est donc l’intrus. La bonne réponse est C.

9. Chaque nombre est le résultat d’une factorielle sauf 125. 125 est donc l’intrus. La bonne réponse est A.

10. Seul 16 n’est pas un nombre premier, c’est donc l’intrus. La bonne réponse est B.

RAPPEL
Un nombre premier est divisible par 1 et lui-même.
1. Fractions

a. Quelques règles

Vous ne pouvez pas diviser par zéro en mathématiques. Ainsi le dénominateur doit toujours être non nul. Cette règle ne s’applique pas au numérateur qui est toujours un nombre réel.

Pour tout réel a, $\frac{a}{0}$ est impossible à calculer.

Exemples

- $\frac{1}{0}$ impossible
- $\frac{42}{0}$ impossible
- $\frac{0}{0}$ impossible

En revanche, $\frac{0}{a} = 0$, pour tout réel a non nul.

Exemples

- $\frac{0}{5} = 0$
- $\frac{3\times 0}{4} = 0$
- $\frac{1\times 0}{0}$ impossible

b. Simplification de fractions

Vous pouvez simplifier une fraction lorsque son numérateur et son dénominateur ont un ou plusieurs facteurs en commun :

Avec x et b non nuls, $\frac{x \times a}{x \times b} = \frac{a}{b}$ et $\frac{a \times x}{b \times x} = \frac{a}{b}$

Exemples

- $\frac{2}{3} = $ irréductible
- $\frac{34}{51} = \frac{2 \times 17}{3 \times 17} = \frac{2}{3}$
- $\frac{1}{3} = $ irréductible

- $\frac{4}{14} = \frac{2 \times 2}{2 \times 7} = \frac{2}{7}$
- $\frac{28}{35} = \frac{7 \times 4}{7 \times 5} = \frac{4}{5}$
- $\frac{10}{12} = \frac{2 \times 5}{2 \times 6} = \frac{5}{6}$

- $\frac{42}{51} = \frac{14 \times 3}{17 \times 3} = \frac{14}{17}$
c. Produit de deux fractions

Pour multiplier deux fractions, il vous suffit de multiplier les numérateurs et les dénominateurs entre eux : \(\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d} \) où \(b \) et \(d \) sont non nuls.

Exemples
- \(\frac{1}{2} \times \frac{9}{5} = \frac{9}{10} \)
- \(\frac{3}{4} \times \frac{1}{4} = \frac{1}{16} \)
- \(\frac{2}{5} \times \frac{4}{15} = \frac{1}{15} \)
- \(\frac{5}{2} \times \frac{1}{25} = \frac{1}{10} \)
- \(17 \times \frac{1}{3} = \frac{17}{3} \)

d. Division de deux fractions

Pour diviser deux fractions, il vous suffit de multiplier la première par l’inverse de la seconde : \(\frac{a}{b} \div \frac{c}{d} = \frac{a \times d}{b \times c} \) où \(b, c \) et \(d \) sont non nuls.

Exemples
- \(\frac{1}{2} + \frac{9}{5} = \frac{1}{10} \)
- \(\frac{10}{3} \div \frac{3}{1} = \frac{10}{3} \)
- \(\frac{17}{3} \div \frac{1}{3} = \frac{17}{3} \)
- \(\frac{5}{2} \div \frac{2}{3} = \frac{10}{5} \)

2. Racines carrées

a. Quelques règles

Vous ne pouvez pas calculer la racine d’un nombre négatif : \(\sqrt{a} \) est impossible à calculer si \(a < 0 \)

Exemples
- \(\sqrt{-2} \) impossible
- \(\sqrt{-1} \) impossible

Une racine est un réel toujours positif ou nul : \(\sqrt{a} = 0 \) ssi \(a = 0 \) (a nul) et \(\sqrt{a} > 0 \) ssi \(a > 0 \) (\(a \) strictement positif)

Exemples
- \(\sqrt{0} = 0 \)
- \(\sqrt{1} = 1 \)
- \(\sqrt{4} = 2 \)

La racine carrée du carré parfait d’un nombre est égale à la valeur absolue de ce nombre : \(\sqrt{a^2} = |a| = \begin{cases} a & \text{si } a > 0 \\ -a & \text{si } a < 0 \end{cases} \)
b. Simplification de racines carrées

Simplifier une racine consiste à repérer le ou les carré(s) éventuel(s) à l’intérieur de la racine puis d’en placer la racine à l’extérieur : \(\forall x \geq 0 \) et \(a \in \mathbb{R} \), \(\sqrt{x a^2} = |a|\sqrt{x} \)

Exemples

- \(\sqrt{16} = \sqrt{4 \times 4} = 4 \)
- \(\sqrt{8} = \sqrt{2 \times 4} = \sqrt{2} \times \sqrt{4} = 2\sqrt{2} \)
- \(\sqrt{32} = \sqrt{2 \times 16} = \sqrt{16} \times \sqrt{2} = 4\sqrt{2} \)
- \(\sqrt{50} = \sqrt{2 \times 25} = \sqrt{25} \times \sqrt{2} = 5\sqrt{2} \)

Vous ne devez en général pas laisser de radical au dénominateur :

\[\forall a > 0, \quad \frac{1}{\sqrt{a}} = \frac{\sqrt{a}}{a} \]

Exemples

- \(\frac{1}{\sqrt{2}} = \frac{\sqrt{2} \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{\sqrt{2}}{2} \)
- \(\frac{2}{\sqrt{2}} = \frac{2 \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{2\sqrt{2}}{2} = \sqrt{2} \)
- \(\frac{\sqrt{3} \times \sqrt{5}}{\sqrt{5} \times \sqrt{5}} = \frac{\sqrt{15}}{5} \)
- \(\frac{1}{\sqrt{1}} = \frac{\sqrt{1}}{1} = 1 \)

Il est souvent nécessaire de simplifier une ou plusieurs racines dans l’expression pour effectuer une addition ou une soustraction.

Exemples

- \(\sqrt{3} + \sqrt{8} = \sqrt{3} + \sqrt{4 \times 4} = \sqrt{3} + 4 = 5 \sqrt{3} \)
- \(\sqrt{2} + \sqrt{8} + \sqrt{4} = \sqrt{2} + \sqrt{4 \times 4} + \sqrt{4} = \sqrt{2} + 4 + \sqrt{2} = 9 \sqrt{2} \)
- \(\sqrt{16} + \sqrt{8} = 4 + \sqrt{2 \times 4} = 4 + 2 \sqrt{2} \)
- \(\sqrt{2} + \sqrt{24} = \sqrt{2} + \sqrt{2 \times 12} = \sqrt{2} + 11 \sqrt{2} = 12 \sqrt{2} \)
- \(\sqrt{14} + \sqrt{8} \) n’est pas simplifiable